Can PHA be Big Data?

How to Make PHA Data Work Smarter

Patrick Nonhof Managing Partner 27 March 2019 27 March 2019

OVERVIEW

Should Process Hazard Analysis (PHA) Information be part of Big Data?

The answer is YES!

This document is the intellectual property of Provenance Consulting, is considered confidential information, is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

- Today's PHA Process
- Big Data

the matterne .

PHA Data Limitations

• Finding a Solution

TODAY'S PHA PROCESS & INFORMATION

PHA Refresher: Basic Steps

This document is the intellectual property of Provenance Consulting, is considered confidential information, is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

Unmitigated Risk (UMR) Assessment

Safeguards

Mitigated Risk (MR) Assessment

Case Study: Distillation Example

Case Study – Cause

Tower Example – Typical Cause Information:

Unit	HF Alkylation Unit
Node	Debutanizer Tower
Deviation	No Flow
Cause	Overhead liquid Control valve FC- 109 loses instrument air and fails closed

Case Study - Consequence

Tower Example – Typical Consequence Information:

Consequence

Increase column pressure to vapor pressure of overhead fluid at reboiler steam temperature

- i. Overpressure: Greater than3 x MAWP
- ii. Vessel Failure

Case Study – Unmitigated Risk Assessment

Tower Example – Typical Risk Determination:

Severity	Catastrophic
Frequency	Occasional
Unmitigated Risk (UMR)	5

	Negligible	Minor	Moderate	Serious	Catastroph
Frequent	2	3	4	5	5
Occasional	1	2	3	4	5
Remote	1	1	2	3	4
Improbable	1	1	1	2	3
Very Improbable	1	1	1	1	2

Case Study - Safeguards

Tower Example – Typical Safeguards:

Safeguard 1:	Shutdown PSD-301
Safeguard 2:	RV-305 Set at 175 psig

Case Study – Mitigated Risk Assessment

Tower Example – Typical Mitigated Risk:

Severity	Catastrophic
Frequency	Very Improbable
Unmitigated Risk (UMR)	2

	Negligible	Minor	Moderate	Serious	Catastroph
Frequent	2	3	4	5	5
Occasional	1	2	3	4	5
Remote	1	1	2	3	4
Improbable	1	1	1	2	3
Very Improbable	1	1	1	1	2

Complete Case Study PHA Scenario

CAUSE			CONSEQUENCE	UNMITIGATED RISK ASSESSMENT			SAFEGUARDS	MITIGATED RISK ASSESSMENT				
Unit	Node	Deviation	Cause	Consequence	Severity	Freq.	Unmitigated Risk (UMR)	Safeguards	Severity	Freq.	Unn Risk	
HF Alkylation UnitDebutanizer TowerNo Flo C	Debutanizer No Tower	No Flow O Co 10 in	Flow Overhead liquid Control valve FC- 109 loses instrument air	Increase column pressure to vapor pressure of overhead fluid at reboiler	Cat.	Cat. Occasion	Occasional	5	1. Shutdown PSD-301	Cat.	Very Improb	
				steam temperature				2. RV-305 Set				
			i. Overpressure: Greater than 3 x MAWP				at 115 psig					
				ii. Vessel Failure								

This document is the intellectual property of Provenance Consulting, is considered confidential information, is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

Unmitigated Risk (UMR) Assessment

Safeguards

Mitigated Risk (MR) Assessment

BIG DATA

Characteristics of "Big Data"

Big Data Defined

Velocity Volume Variety

Characteristics of "Big Data"

PHA Data as Big Data

<u>Volume</u>

One PHA: 1500 scenarios

Large Petrochem plant: 30 PHA's

One cycle: 45,000 PHA scenarios

6 cycles (30 years): 270,000 scenarios

<u>Variety</u>

Complete PHA data sets reside in a variety of forms:

PDFs, Excel, PHA facilitation systems, plus the reference/source documents: CAD drawings, etc.

<u>Velocity</u>

Reports every 5 years *Applies when you use PHA data to add context to operational data which has a much higher velocity.

This document is the intellectual property of Provenance Consulting, is considered confidential information, is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

PHA Big Data Goals

Veracity

Address inconsistencies in PHA teams' wording, risk analysis, rationale, etc. that create uncertainty in the data

<u>Value</u>

Data Comparisons Knowledge capture Predictive model connections

PHA DATA LIMITATIONS

The Big Picture

The Industry <u>Does</u> facilitate its PHAs well

This document is the intellectual property of Provenance Consulting, is considered confidential information, is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

The Industry <u>Doesn't</u> manage its PHA data as well

The In's and Out's of PHAs

What Goes In

Manhours:

- Extensive Preparation
- Multi-week, multi-participant event

Expertise Repository

- 20 years of institutional knowledge
- From people ready to or already retired

Resources

- Logistics & budget planning (back-filling team) members)
- Retrieving all documentation for reference

This document is the intellectual property of Provenance Consulting, is considered confidential information, is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

What Comes Out

Up-to-date Process Safety Information (PSI)

Massive Report (filed away between PHAs)

Recommendations list with action plans

Independent Protection Layer (IPL) lists

What's the Problem?

A paradigm shift is needed for the industry's approach to PHAs

Single focus
Siloed Data
Snapshot in album

- Compare and analyze
- Easy access

What are the Barriers?

Lack of Accessibility Lack of Structure

This document is the intellectual property of Provenance Consulting, is considered confidential information, 19 is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

P

Barrier: Lack of Accessibility

- Not easily searchable
- Data stored in stand-alone software
 - Restricted ability to view native files
 - Different file formats
- Most common form is hard copy binders on a shelf

Barrier: Lack of Structure

- "Free text" fields used to document/embed extremely important data:
 - Process fluid
 - Equipment involved
 - Safeguards
 - Consequence details

• Puts undue limits on the usability of the data

> This document is the intellectual property of Provenance Consulting, is considered confidential information, is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

1. Failure of

2. Invert and opening of

bypass around

control LV-101A

much.

control loop UC

101A such that valve is open too

Consequences	S-S	S-E	S-C	Safeguards	Cause likelihood	Unmitigated risk rankings			
						Safety	Environment	Asset	
1. Potential for gas blowby into the low-pressure sepa- rator V-102. Potential for	5	3	4	 Relief valve PSV-102, which is sized for gas blowby. 	3			4	
overpressure of low-pressure separator. Potential for loss of mechanical integrity. Potential for rupture of				2. Low-level shutdown LT-101B closes low-pressure separator inlet SDV-102A.					
vessel or associated piping. Potential release of flam- mable materials. Potential fire or explosion.				3. Operator response to low-level alarm LT-102A, not independent from control loop failure.					
				4. High-pressure shutdown PT- 102B closes SDV-102A. No credit taken for this IPL due to shared final element with LT-101B low- level shutdown.					
1. Potential for gas blowby into the low-pressure sepa-	5 3	3	3 4	1. Relief valve PSV-102, which is sized for gas blowby.	2	4	2	1	
rator V-102. Potential for overpressure of low-pressure separator. Potential for loss of mechanical integrity. Potential for rupture of vessel or associated piping. Potential for release of flam- mable materials. Potential				2. Low-level shutdown LT-101B closes low-pressure separator inlet SD-102A.					
				3. Operator response to low-level alarm LT-101A.					
fire or explosion.				4. High-pressure shutdown PT- 102B closes SDV-102A. No credit taken for this IPL due to shared Spal element.					

Without intentional structure, how consistent are your PHA's for:

The Same Technologies & Equipment?

This document is the intellectual property of Provenance Consulting, is considered c

is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

<u>Consider</u>:

Do they have similar causes, consequences, or risk levels?

Envision the Possibilities

What if we could use PHA data to:

This document is the intellectual property of Provenance Consult is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

Understand the Risk Profiles for your units?

> Match spending with risk and tolerance levels?

Maintain centralized documenting and reporting?

Use analytics to make decisions?

Provide better access to your knowledge repository?

FINDING A SOLUTION

Step 1: Start with Structure

1. Structure improves **Consistency**

2. Consistency allows for Analytics

3. Analytics directs and supports Decisions

Improving Structure – Cause

Tower Example – Add Cause Categories:

Unit	HF Alkylation Unit
Node	Debutanizer Tower
Deviation	No Flow
Cause	Overhead liquid Control valve FC-109 loses instrument air and fails closed
Technology	HF Alkylation
Cause Category	Blocked Outlet
Process Fluid	Butane
Location	Overhead of Debutanizer

Improving Structure – Consequence

Tower Example – Add Consequence Categories

Consequence	Increase column pressure to vapor pressure of overhead fluid at reboiler steam temperature i. Overpressure: Greater than 3 x MAWP ii. Vessel Failure		
Simplified Consequence	Tower overpressure		
Equipment	Debutanizer V-300		

Improving Structure – Safeguards

Tower Example - Add Safeguard categories:

Safeguard 1: Description	Shutdown PSD-301
Safeguard 1: Type	Safety Instrumented System
Safeguard 1: Priority	1
Safeguard 2: Description	RV-305 Set at 175 psig
Safeguard 2: Type	Pressure Relief Device
Safoguard 2.	

Step 2: Compare the Data - Analytics

1. Structure improves **Consistency**

2. Consistency allows for Analytics

3. Analytics directs and supports Decisions

Analytics: Identify & Manage Discrepancies

Now that we've structured the scenarios:

This document is the intellectual property of Provenance Consulting, is considered confidential information, is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

Compare

that specific scenario across multiple PHAs to review patterns or discrepancies.

Identify

discrepancies to be resolved or justified at the scenario level.

Analytics: Compare Related Scenarios

Sort and find related scenarios easily Use Cause Categories

	Plant 1	Plant 2
Node	Debutanizer Tower	Debutanizer Towe
Deviation	No Flow	No Flow
Cause	Overhead liquid Control valve FC-109 loses instrument air and fails closed	Loss of instrument receiver liquid flow which fails closed.
Technology	HF Alkylation	HF Alkylation
Cause Category	Blocked Outlet	Blocked Outlet
Process Fluid	Butane	Butane
Location	Overhead of Debutanizer	Overhead of Debut

Analytics: Compare Consequences

Comparing Consequences & Risk

	Plant 1	Plant 2
Consequence	Increase column pressure	Increase
	to vapor pressure of	to vapo
	overhead fluid at reboiler	bottom
	steam temperature	steam t
	Overpressure:	•
	Greater than 3 x	
	MAWP	
	 Vessel Failure 	•
Simplified	Tower overpressure	Tower
Consequence		
Equipment	Debutanizer V-300	Debuta
Severity	Extreme	Modera
Frequency	Occasional	Occasio
Unmitigated Risk	5 Socument is the intellectual prope	3 rtv of Prov

venance Consulting, is considered confidential information, is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

- e column pressure r pressure of ns fluid at reboiler emperature Overpressure:
- Ranges from 1.2-
- $2.2 \times MAWP$
- Gasket Failure

overpressure

nizer T-5

te

onal

Analytics: Compare Safeguards

Comparing Safeguards

	Plant 1	Plant 2
Safeguard 1: Description	Shutdown PSD-301	PSV-1 Set
Safeguard 1: Type	Safety Instrumented System	Pressure l Device
Safeguard 1: Priority	1	1
Safeguard 2: Description	RV-305 Set at 175 psig	Alarm PA
Safeguard 2: Type	Pressure Relief Device	Alarm
Safeguard 2: Priority	2	2

Analytics: Compare Mitigated Risk

Compare Mitigated Risk

	Plant 1	Plant 2
Severity	Catastrophic	Moderate
Frequency	Very Improbable	Improbable
Mitigated Risk (MR)	2	1

Analytics: Big Picture Comparisons

Compare Consequences and Risks

NUMBER	CAUSE CATEGORY
<u>1.1.1.1.</u>	Operator or Maintenance Action -1
<u>1.1.2.1.</u>	Operator or Maintenance Action -1
<u>1.1.3.1.</u>	Operator or Maintenance Action -1
<u>1.1.4.1.</u>	Pump Failure -1
<u>1.1.5.1.</u>	Operator or Maintenance Action -1
<u>1.1.6.1.</u>	Operator or Maintenance Action -1
<u>1.1.7.1.</u>	Operator or Maintenance Action -1
<u>1.1.8.1.</u>	Operator or Maintenance Action -1
<u>1.1.9.1.</u>	Operator or Maintenance Action -1
<u>1.1.10.1.</u>	Operator or Maintenance Action -1
<u>1.1.11.1.</u>	Operator or Maintenance Action -2
1.1.12.1.	Operator or Maintenance Action -1

CONSEQUENCE	6	UMR
Loss of feed to Column 1 and loss of flo		3
Loss of feed to Column 1 and loss of flo		4
Loss of feed to Column 1 and loss of flo		4
Loss of feed to Column 1 resulting in Io		5
Loss of feed to Column 1 and loss of flo		5
Loss of feed to Column 1 and loss of flo		3
Loss of feed to Column 1 and loss of flo		3
Loss of feed to Column 1 and loss of flo		4
Loss of feed to Column 1 and loss of flo		4
Loss of feed to Column 1 resulting in Io		5
Loss of feed to Column 1 resulting in Io		4
Loss of feed to Column 1 resulting in lo		3

Analytics: Compare Safeguards

Compare Safeguards by Unmitigated Risk Level

View most common/frequently used safeguards for entire facility: BPCS Local

- Basic process control system (BPCS) Alarms, Controls and Local
- Pressure Relief Device (PRD)
- Safety Instrumented Function (SIF)
- Standard Operating Procedure (SOP)
- Other Safeguards

Analytics: Risk Metrics Example

Looking at Risk in a Plant...

Unmitigated Risk Value Weighted average:

	Negligible	Minor	Moderate	Serious	Catastrophic
Frequent	2 185	3 117	4 167	5 238	5 142
Occasional	1 233	2 183	3 313	4 460	5 259
Remote	1 24	1 13	2 12	3 50	4 22
Improbable	1 0	1 0	1 0	2 0	3 0
Very Improbable	1 0	1 0	1 0	1 0	2 0

URV 3.4

Step 3: Make Informed Decisions

1. Structure improves **Consistency**

2. Consistency allows for Analytics

3. Analytics directs and supports Decisions

Example Continued: Risk Metrics

Calculating a Risk Profile (weighted averages):

- •URV unmitigated risk value
- •MRV mitigated risk value (after safeguards applied)
- •RRV* reduced risk value: impact of your safeguards

Decisions: Risk Metrics Example

•Overall – Corporate Risk Profile

•Plant 1 Unit Risk Profile

•Plant 2 Unit Risk Profile

This document is the intellectual property of Provenance Consulting, is considered confiden is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

Questions to ask:

- Is Plant 1's URV too low?
- Why is Plant 2 unmitigated risk so high?
- Is Plant 2 taking too ightarrowmuch credit for safeguards?
- Does Plant 2 have more robust safeguards?

Decisions: Connect the Big Data Dots

- Start with an "I wonder" statement: "I wonder if any alarms are safeguards for more than one scenario?"
 - Examine the safeguard connections to indicators/alarms
 - Filter for the facility's 50 highest risk scenarios
 - What does it tell you? Do you have one alarm that is critical for your facility? Is that wise? Are you maintaining it accordingly? Is your team training on it appropriately? Routinely enough?

• Don't set the course, let the data lead – see where it takes you!

This document is the intellectual property of Provenance Consulting, is considered confidential information, 41 is intended solely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

--

Decisions: Connecting the Dots

- Key in on critical scenarios
- Analyses could help determine where to:
 - Focus manpower and budget resources
 - Emphasize training
 - Direct mechanical integrity efforts

MOVING FORWARD

Key Take-aways

- A paradigm shift is needed to embrace Big Data concepts for PHA Data Micro ---> Macro
- Realizing Big Data possibilities for PHA data begins with addressing accessibility and structure issues.
- Big Data tools can move us forward. This document is the intellectual property of Provenance Co is intended solely for internal use, may not be distributed externally, and

Questions?

Patrick.Nonhof@provpsm.com

www.provpsm.com

© 2019 Provenance Consulting. All Rights Reserved.

Patrick Nonhof Managing Partner **Provenance** Consulting This document is the intellectual property of Provenance Consulting, is considered 27 March 2019 lely for internal use, may not be distributed externally, and may be further protected by trademark and/or copyright laws.

For additional questions, contact: Patrick Nonhof at

